Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Calcium and Short-Term Synaptic Plasticity

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Netherlands Journal of Zoology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Animal Biology (Vol 53 and onwards).

The sites of presynaptic action of calcium ions in triggering exocytosis and in activating various forms of short-term enhancement of synaptic transmission are discussed. A detailed presentation of methods and results is left to original publications. Instead, an attempt is made to collate a variety of findings and synthesize a picture of how Ca2+ operates in nerve terminals to trigger release and enhance evoked release following electrical activity. It is concluded that Ca2+ triggers neurosecretion by acting very near Ca2+ channel mouths, at high concentration, with high stoichiometry, to activate low affinity binding sites with fast kenetics. Facilitation, augmentation, and potentiation are consequences of actions of residual presynaptic Ca2+ remaining after prior electrical activity. Facili6tation is caused by Ca2+ acting with fast kinetics, but probably with moderately high affinity at a site distinct from the secretory trigger. Augmentation and potentiation are caused by residual Ca2+ acting at yet another site, probably of high affinity, and with rate constants of about 1s. Post-tetanic potentiation lasts so long because nerve terminals cannot remove residual Ca2+ quickly after prolonged stimulation. Processes similar to augmentation and potentiation apear to occur at some hormonal cells as well as in neurons. The molecular receptors for Ca2+ in short-term synaptic plasticity have yet to be identified, but Ca2+/calmodulin protein kinase II is not a likely candidate.

Affiliations: 1: Division of Neurobiology, Molecular and Cell Biology Department, University of California, Berkeley, CA 94720 U.S.A.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Netherlands Journal of Zoology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation