Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Comparison of three vibrational modes (twist, vertical and horizontal) for fluidization of fine particles

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

Price:
$30.00+ Tax (if applicable)
Add to Favorites

image of Advanced Powder Technology

The effects of three vibrational modes (twist, vertical and horizontal) on flow patterns are discussed. The particles used are four powders (glass beads, 6-100 μm), which are Geldart group A or group C. The fluidity of particles is evaluated with vibration strength (Λ), minimum fluidization velocity (umf), void fraction and flow patterns in the bed. The effect of vibrational mode on the flow patterns appears in whole bed motion, which is horizontal rotation or vertical rotation caused by twist or horizontal vibrational mode, respectively. For 60 and 100 μmf particles, bubble behavior is dominant higher than umf. Thus, the effects of vibrational mode on the flow patterns in the bed and umf are not significant. For 30 μm particles, the horizontal rotation or vertical rotation are caused by twist or horizontal vibrational mode, respectively. For 6 μm particles, vertical rotation was not observed. When horizontal vibration is added to the bed, the lower limit of gas velocity for channel breakage for 6 μm is the lowest among the three vibrational modes. It is considered that the horizontal vibration affects channel breakage as the shear force.

Loading

Article metrics loading...

/content/journals/10.1163/15685520052384998
2001-06-01
2015-05-30

Affiliations: 1: Departments of Materials Science and Chemical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to email alerts
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Name:*
    Email:*
    Your details
    Name:*
    Email:*
    Department:*
    Why are you recommending this title?
    Select reason:
     
     
     
     
    Other:
     
    Advanced Powder Technology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation