Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Circulating particle flow and air bubble behavior at various superficial air velocities in two-dimensional gas–solid fluidized beds

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Circulating particle flow and behavior of air bubbles in a two-dimensional gas-solid fluidized bed of various superficial air velocities are investigated by recording videos of movement of a plastic pellet put into the fluidized bed and rising air bubbles using a video camera. The movement velocity of the plastic pellet and properties of the air bubbles such as the bubble rising velocity and the bubble distribution coefficient, which shows the proportion of the bubbles erupting at the center of the bed surface, are measured by analyzing the videos. It is found that the plastic pellet moves following the circulating particle flow; the particles rise up at the center of a column and fall down near the side walls, and that the movement velocity increases with the superficial air velocity. The bubble rising velocity, the apparent erupting bubble size and the bubble distribution coefficient increase, and the bubble eruption frequency slightly decreases, with the superficial air velocity. These results indicate that the circulating particle flow is generated by the rising air bubbles. In particular, the fact that the air bubbles rise at the center of the column and coalesce with other bubbles is closely related to the generation of the circulating particle flow.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation