Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Evaluation of fluidized particle flow by measurement of apparent buoyancy

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Advanced Powder Technology

Fluidized particle flow is evaluated by the apparent buoyancy acting on a sphere in the fluidized bed. The apparent buoyancy is simply obtained as follows: the weight of the lead sphere is measured at various positions in the fluidized glass beads and the difference between the weight in the fluidized bed and that in the atmosphere is regarded as the apparent buoyancy. The particle flow coefficient α is calculated using the distribution of the apparent buoyancy to show the strength of the particle flow. Measurements are carried out varying the superficial air velocity, the height of the bed, the particle size and the sphere size, and the distributions of the apparent buoyancy and the values of α are compared. It is found that the fluidized particle flow can be simply evaluated by the distributions of the apparent buoyancy and the values of α, and that the difference of the particle flow under various experimental conditions is proved by them, e.g. the circulating particle flow becomes strong as the superficial air velocity increases.

Affiliations: 1: Department of Applied Chemistry, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Advanced Powder Technology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation