Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Discrete element simulations of a high-shear mixer

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Advanced Powder Technology

Particle motion in a vertical-axis mixer was studied using discrete element method (DEM) simulations and positron emission particle tracking experiments. The mixer was fixed with a circular disk rotating in a horizontal plane or a simple paddle. In the DEM simulations, linear springs, dashpots and frictional sliders were used to model the contact mechanics between the particles and the particles and the walls. Quantitative comparisons were made between the numerical calculations and the experimental measurements. The DEM prediction captures the major features of the flow patterns in the mixer when the mixer was fixed with a disk impeller rotating at 100 r.p.m., although the predicted particle velocities are higher than experimental measurements when using physically reasonable simulation parameters (normal stiffness = 1000 and 10 000 N/m; coefficient of restitution = 0.9; internal friction coefficient = 0.2, 0.3 and 0.45; wall friction coefficient = 0.2, 0.25 and 0.3). However, when the mixer was fixed with the paddle impeller, the calculated results using physically reasonable simulation parameters were different from the measurements. The calculated particle velocity was as high as 2 m/s, while the averaged particle velocity from measurement was about 0.1 m/s.

10.1163/156855204774150109
/content/journals/10.1163/156855204774150109
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156855204774150109
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156855204774150109
Loading

Article metrics loading...

/content/journals/10.1163/156855204774150109
2004-06-01
2016-12-04

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Advanced Powder Technology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation