Cookies Policy
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Luminescence and crystallinity of flame-made Y2O3:Eu3+ nanoparticles

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

$30.00+ Tax (if applicable)
Add to Favorites

image of Advanced Powder Technology

Cubic and/or monoclinic Y2O3:Eu3+ nanoparticles (10–50 nm) were made continuously without post-processing by single-step, flame spray pyrolysis (FSP). These particles were characterized by X-ray diffraction, nitrogen adsorption and transmission electron microscopy. Photoluminescence (PL) emission and time-resolved PL intensity decay were measured from these powders. The influence of particle size on PL was examined by annealing (at 700–1300°C for 10 h) as-prepared, initially monoclinic Y2O3:Eu3+ nanoparticles resulting in larger 0.025–1 μm, cubic Y2O3:Eu3+. The influence of europium (Eu3+) content (1–10 wt%) on sintering dynamics as well as optical properties of the resulting powders was investigated. Longer high-temperature particle residence time during FSP resulted in cubic nanoparticles with lower maximum PL intensity than measured by commercial micron-sized bulk Y2O3:Eu3+ phosphor powder. After annealing as-prepared 5 wt% Eu-doped Y2O3 particles at 900, 1100 and 1300°C for 10 h, the PL intensity increased as particle size increased and finally (at 1300°C) showed similar PL intensity as that of commercially available, bulk Y2O3:Eu3+ (5 μm particle size). Eu doping stabilized the monoclinic Y2O3 and shifted the monoclinic to cubic transition towards higher temperatures.


Article metrics loading...


Affiliations: 1: Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland; 2: Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland


Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to email alerts
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Advanced Powder Technology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation