Cookies Policy
X
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Application of magnetic resonance imaging techniques to particulate systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

Price:
$30.00+ Tax (if applicable)
Add to Favorites

Magnetic resonance imaging (MRI) is a well-established technique in the medical field, typically for imaging liquid water in the human body, but it is increasingly being used in the field of engineering and materials science. A particular section of this is in the area of particulate systems and granular material flows. MRI is being used to provide a unique insight into particle distribution and motion with in situ measurements. In this paper we discuss how judicious choice and development of imaging technique applied to various different granular systems can provide us with valuable new data on the processes occurring in granular flows. Experimental results focus on rotating bed segregation, velocity imaging in vertical fluidized beds and phase-resolved velocity distributions within vertical vibro-fluidized beds. A discussion of the various imaging techniques used to acquire these data is also given.

Affiliations: 1: Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Create email alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Name:*
    Email:*
    Your details
    Name:*
    Email:*
    Department:*
    Why are you recommending this title?
    Select reason:
     
     
     
     
    Other:
     
    Advanced Powder Technology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation