Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Examining soft particulates using an atomic force microscope and a quartz crystal microbalance

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

The adsorption of a simple surfactant [cetyltrimethylammonium chloride (CTAC)], in relatively high concentration salt solutions has been studied using atomic force microscopy (AFM) and a quartz crystal microbalance (QCM). Two oppositely charged surfaces were investigated: silica and alumina. The AFM images demonstrated clear adsorption of spherical CTAC micelles on silica but not on alumina, as expected. However, AFM images indicated the presence of rod and worm-like micelles of CTAC on both surfaces in agreement with what was expected from the solutions being used. This was explained in terms of the much greater stability of these larger structures in the vicinity of the AFM tip compared to the much smaller spherical micelles, even though no bonding will take place at the alumina surface. The QCM data on these solutions also shows a significant difference in the behavior for the spherical micelle system when compared with the rod or worm-like systems. From the QCM data we infer that a slip plane is present for the worm-like solutions and that the effect of slip on the data increases as the salt concentration increases.

Affiliations: 1: Institute of Particle Science and Engineering, University of Leeds, Leeds LS2 9JT, UK


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation