Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Computed particle hold-up in a vertical pneumatic conveying line

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the Brill platform automatically have access to the MyBook option for the title(s) acquired by the Library. MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Access this article

+ Tax (if applicable)
Add to Favorites

image of Advanced Powder Technology

Theoretical formulas developed from drift-flux model were used to predict the solid hold-up of gas-solid transportation in a vertical pneumatic conveying line. These formulas depend on their physical properties: density, viscosity and diameter of particles, and the flow rates of the two phases. For low solid flux, the calculations from this drift-flux model agree very well with experimental results. At high solid flow or low gas flow rate, the solid distribution in the conveying line is not uniform. We obtain a larger discrepancy between the theoretical computation and experimental results. Using hydrodynamic equations including two continuity equations and two momentum equations to predict the solid hold-up produces better results.

Article metrics loading...


Affiliations: 1: Department of Applied Chemistry, Chung Cheng Institute of Technology, Taoyuan, Taiwan, ROC; 2: Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA


Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Advanced Powder Technology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation