Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The effects of frequency and amplitude on the powder coating of fluidizing particles in a vibro-fluidized bed

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites

image of Advanced Powder Technology

—Glass beads were coated in a vibro-fluidized bed by atomizing a fine silica powder and polyvinyl alcohol solution. The coating efficiency and weight fraction of the agglomerated particles were measured under various experimental conditions, and their dependencies on the amplitude and frequency of vibration were investigated. When the humidity of the outlet gas was high, high coating efficiency and agglomeration of core particles were observed. The efficiency of the powder coating decreased as the amplitude and the frequency increased, while the agglomeration was prevented by the addition of vibration. It was confirmed that high-quality and high-efficiency coating, where few agglomerates were produced and silica powder was utilized efficiently, was possible using the vibro-fluidized bed with adequate amplitude and frequency.

Affiliations: 1: Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi 804-8550, Japan; 2: Kyushu Plant, Mitsubishi Chemical Corp., 1-1 Shiroishi Kurosaki, Yahatanishi-ku, Kitakyushu-shi 806-0004, Japan

10.1163/156855299X00154
/content/journals/10.1163/156855299x00154
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156855299x00154
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156855299x00154
Loading

Article metrics loading...

/content/journals/10.1163/156855299x00154
1999-01-01
2016-09-29

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation