Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Acquisition and analysis of brainstem auditory evoked responses of normal and diseased subjects by spectral estimation

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Frontiers of Medical and Biological Engineering

Human brainstem auditory evoked responses (BAERs) are sensory evoked potentials that can be recorded within a few milliseconds following a transient acoustic stimulus (click signal). This paper suggests a novel technique to clearly demarcate normals and patients with complaints of vertigo and deafness by computing hitherto unused power spectral parameters from the BAER signals recorded on them. The BAER spectrum of normal subjects contains three main frequency components, i.e. low-, mid- and high-frequency components around 100, 500 and 1000 Hz, respectively, which is not so in the case of diseased subjects. The spectral parameters, i.e. the mean power frequency, median frequency, the ratios of the integrated power at dominant frequencies to that of the total power in spectrum and change in spectral power (CP) between these dominant frequency components are used to classify the recorded BAER signals into those of normals and the patients, and aid the clinician in quick and better diagnosis. The ranges of CP are estimated for the different groups and appear to be the most dominant parameter in the classification of the BAER signals.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Frontiers of Medical and Biological Engineering — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation