Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Integrated approach of an artificial neural network and numerical analysis to multiple equivalent current dipole source localization

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

The authors have developed a PC-based multichannel electroencephalogram (EEG) measurement and analysis system. This system enables us (1) to simultaneously record a maximum of 64 channels of EEG data, (2) to measure three-dimensional positions of the recording electrodes, (3) to rapidly and precisely localize equivalent current dipoles (ECDs) responsible for the EEG data, and (4) to superimpose the localization results on magnetic resonance images. A new neural network and numerical analysis (NNN) approach to ECD localization is described which integrates a feedforward artificial neural network (ANN) and a numerical optimization (Powell's hybrid) method. It was shown that the ANN method has the advantages of high-speed localization and noise robustness, because in this approach: (1) ECD parameters are immediately initialized from the recorded EEG data by the ANN and (2) ECD parameters are accurately refined by the hybrid method. Our multiple ECD localization method was applied to sensory evoked potentials and event-related potentials using the present system.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Frontiers of Medical and Biological Engineering — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation