Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Spontaneous heart regeneration in adult MRL mice after cryoinjury

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Gene Therapy and Regulation

The reaction of myocardium to injury is generally characterized by a tissue repair mechanism that is initially beneficial in maintaining tissue integrity but which ultimately has a debilitating effect on cardiac function. The components of this type of wound healing response in the mammalian heart have been the subject of extensive study. Far less understood, however, are the dynamics of inflammation, ECM remodeling and scar formation at the site of injury, as well as compensatory adaptations of adjacent uninjured myocardium such as angiogenesis, cadiomyocyte hypertrophy, and apoptosis in the regenerative response to a myocardial injury. Recent observations in the MRL strain of mice indicate a capacity to heal myocardial injury with a rapid resolution of granulation tissue and little scar tissue, an increase of cardiomyocyte BrdU incorporation and restoration of myocardial architecture/function. The role of stem cells in this process remains to be elucidated for MRL mice. This response to injury, however, suggests epimorphic regeneration rather than repair.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Gene Therapy and Regulation — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation