Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Globin gene transfer: a paradigm for transgene regulation and vector safety

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Gene Therapy and Regulation

The β-thalassemias and sickle cell disease are severe congenital anemias that are caused by the defective synthesis of the β chain of hemoglobin. Allogeneic hematopoietic stem cell (HSC) transplantation is curative, but this therapeutic option is not available to the majority of patients. The transfer of a regulated β-globin gene in autologous HCSs thus represents a highly attractive alternative treatment. This strategy, simple in principle, raises major challenges in terms of controlling transgene expression, which ideally should be erythroid-specific, differentiation stage-restricted, elevated, position-independent, and sustained over time. Using lentiviral vectors, we recently demonstrated that an optimized combination of proximal and distal transcriptional control elements permits lineage-specific and elevated expression of the β-globin gene, resulting in therapeutic hemoglobin production and correction of anemia in β-thalassemic mice. Several groups have now confirmed and extended these findings in various mouse models of severe hemoglobinopathies, thus generating enthusiasm for a genetic treatment based on globin gene transfer. Furthermore, globin vectors provide a paradigm for improving vector safety by restricting transgene expression to the differentiated progeny within a single lineage, thereby reducing the risk of activating oncogenes in hematopoietic progenitors. Here we review the principles underlying the genesis of regulated vectors for stem cell therapy.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Gene Therapy and Regulation — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation