Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Antisense derivatives of U7 and other small nuclear RNAs as tools to modify pre-mRNA splicing patterns

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Gene Therapy and Regulation

The importance of alternative splicing for the diversity of the proteome and the large number of genetic diseases that are due to splicing defects call for methods to modulate alternative splicing decisions. Although splicing can be modulated by antisense oligonucleotides, this approach is confronted with problems of efficient delivery and the need for repeated administrations of large amounts of the oligonucleotides. Therefore we have developed methods allowing us to modulate splicing with the help of modified derivatives of the U7 small nuclear RNA involved in histone RNA 3′ end processing. Its nuclear accumulation as a stable ribonucleoprotein particle makes U7 snRNA especially useful for this purpose. In particular, U7 derivatives containing two tandem antisense sequences directed against targets upstream and downstream of an exon can induce the efficient and specific skipping of that exon. U7 expression cassettes have been successfully introduced into a great number of cell lines, primary cells or tissues with the help of lentiviral and adeno-associated viral vectors. Examples of these therapeutic strategies in the fields of β-thalassemia, Duchenne muscular dystrophy and HIV/AIDS are discussed.

10.1163/1568558043967472
/content/journals/10.1163/1568558043967472
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/1568558043967472
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/1568558043967472
Loading

Article metrics loading...

/content/journals/10.1163/1568558043967472
2004-12-01
2016-12-11

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Gene Therapy and Regulation — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation