Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Interactions of D-amphetamine with the active site of monoamine oxidase-A

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Inflammopharmacology

Reversible monoamine oxidase A inhibitors (RIMA) are used as antidepressants but little is known about how they interact with the active site of the enzyme. Heterologous expression of human liver MAO-A in yeast provides sufficient protein for molecular studies and direct observation of the changes in the spectrum of the FAD co-factor when inhibitors bind. Using the reversible inhibitor, D-amphetamine, as a model compound, a concentration-dependent change in the spectrum with clean isosbestic points was observed. The decrease in absorbance between 400 and 500 nm gave a dissociation constant for binding similar to the Ki value. Anaerobic reduction yielded the semiquinone spectrum only and the midpoint potential was the same as the free enzyme. Full reduction was not possible with dithionite as the reductant, suggesting that the semiquinone-reduced couple had a much lower midpoint potential than the free enzyme. In contrast, with substrate, which reduces the enzyme on an equimolar basis, the semiquinone is never seen. In anaerobic stopped-flow experiments, amphetamine inhibits completely the reoxidation of the reduced enzyme in contrast to a substrate such as 2-phenylethylamine (the desmethyl analogue of amphetamine) that accelerates the rate 12-fold. The spectral changes in MAO-A permit the examination of inhibitor interaction with the redox co-factor. Stacking of the inhibitor and flavin rings constitutes part of the interaction but, taking into account other evidence, steric factors may be the clue to the differences between substrate and inhibitor.

Affiliations: 1: Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, Scotland, UK


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Inflammopharmacology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation