Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Two-dimensional fine particle positioning under an optical microscope using a piezoresistive cantilever as a manipulator

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

In this paper, a fine particle manipulation system using a piezoresistive microcantilever, which is normally utilized in Atomic Force Microscopy, as the manipulator and force sensor, and a top-view Optical Microscope (OM) as the vision sensor is proposed. Modeling and control of the interaction forces among the manipulator, particle and surface have been realized for moving particles with sizes less than 3 μm on a silicon substrate in 2D. The microcantilever behaves also as a force sensor which enables contact point detection, real-time force measurements, and surface alignment sensing. A 2D OM real-time image feedback constitutes the main user interface, where the operator uses mouse cursor and keyboard for defining the tasks for the cantilever motion controller. Preliminary particle manipulation experiments are demonstrated for 2.02 and 1 μm gold-coated latex particles, and it is shown that the system can be utilized in 2D micro particle assembling.

Affiliations: 1: Institute of Industrial Science, University of Tokyo, Roppongi, 7-22-1, Minato-ku, Tokyo, 106-8558, Japan


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation