Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Study on an injection quantity sensor. II: Evaluation of the sensing element

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

For further optimization of the combustion process, the information about the actually injected fuel quantity is desirable, especially in diesel engines equipped with direct injection technology. A miniaturized hot-film anemometer with a titanium/platinum metallization on a low-temperature co-fired ceramics substrate was developed and integrated into a Common Rail injection nozzle. The micro-flow sensor proved its high performance and its capability over the complete fuel quantity map of a high pressure hydraulic injection system where drive pulses for the operation of the injector range between 0.3 ms and 1.5 ms at injection pressures up to 135 MPa (1350 bar). In correspondence with measurements of an injection amount indicator integrated into the hydraulic test bench, the injected fuel quantity and the opening behaviour of the orifice were derived from the sensor signals as a function of injection parameters. Assuming a power law dependence on the fluid velocity for the flow-sensitive portion of the heat-transfer coefficient, a value of 0.5 for the exponent was determined experimentally, in excellent agreement with theoretical predictions.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation