Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Participation of ionotropic and metabotropic glutamate receptors in taste cell responses to MSG

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Sensory Neuron
For more content, see Primary Sensory Neuron.

We have previously reported that monosodium glutamate (MSG) stimulation elicited three types responses (transient inward current, sustained inward current and outward current) while L-AP4 (a potent mGluR4 agonist) evoked only outward currents in C57BL/6J mouse taste cells. The outward current responses to MSG and L-AP4 appeared to be mediated by metabotropic glutamate type 4 receptors (mGluR4). In this study, we examined whether agonists of ionotropic glutamate receptor agonists (NMDA, AMPA and ibotenic acid) also elicit responses in mouse taste cells. NMDA (1 mM) elicited transient inward currents, similar to those often observed with MSG, indicating the presence of NMDA receptor/channels that are permeable to Ca2+ ions and are activated by MSG in some taste cells. The sustained inward current response to MSG appeared to result from activation of a nonselective cation conductance, but it is not known if this response is coupled to ionotropic or metabotropic receptors. AMPA (1 mM) elicited small outward currents in all responding cells. Ibotenic acid, which produces a considerably stronger umami taste than MSG in humans, elicited two types of responses in isolated cells; transient inward currents and sustained inward current, suggesting that inward, as well as outward, currents are related to umami transduction. Also, we confirmed that MSG, AP4 (2 mM) and NMDA all can increase [Ca2+]i in taste cells. These results indicate that some cells have both metabotropic and ionotropic receptors, while other taste cells have only one or the other type of receptor.

10.1163/156856501750387238
/content/journals/10.1163/156856501750387238
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156856501750387238
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156856501750387238
Loading

Article metrics loading...

/content/journals/10.1163/156856501750387238
2001-08-01
2016-12-08

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Sensory Neuron — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation