Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Genetics of intake of umami-tasting solutions by mice

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Sensory Neuron
For more content, see Primary Sensory Neuron.

Inbred strains of mice provide a powerful tool for genetic dissection of quantitative behavioral traits. We have investigated intake of the umami-tasting substances monosodium glutamate (MSG) and inosine 5′-monophosphate (IMP) in inbred mice. Studies with two inbred strains, C57BL/6ByJ and 129P3/J have revealed strain differences in voluntary consumption of 300 mM MSG which depend, at least partially, on postingestive effects of solution consumption, as well as on strain differences in preferences for much lower MSG concentrations, which depend on perception. The strain difference in MSG acceptance was in the opposite direction to the strain difference in NaCl acceptance and was unrelated to sweetener preference in the F2 generation. Thus, the strain differences in MSG acceptance are not related to the strain differences in salty or sweet taste responsiveness and most likely represent specific umami taste responsiveness. High acceptance of MSG solutions by the C57BL/6ByJ mice was inherited as a recessive trait in the F2 hybrid generation. Further genetic linkage analyses using the F2 hybrids are being conducted to map chromosomal locations of genes determining the strain difference in MSG acceptance. At the same time, a wider range of inbred strains is being phenotyped in a search for new model systems for studying umami substance acceptance.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Sensory Neuron — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation