Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The representation of umami taste in the human and macaque cortex

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Sensory Neuron
For more content, see Primary Sensory Neuron.

To investigate the neural encoding of glutamate (umami) taste in the primate, recordings were made from taste responsive neurons in the cortical taste areas in macaques. Most of the neurons were in the orbitofrontal cortex (secondary) taste area. First, it was shown that there is a representation of the taste of glutamate which is separate from the representation of the other prototypical tastants sweet (glucose), salt (NaCl), bitter (quinine) and sour (HCl). Second, it was shown that single neurons that had their best responses to sodium glutamate also had good responses to glutamic acid. Third, it was shown that the responses of these neurons to the nucleotide umami tastant inosine 5′-monophosphate were more correlated with their responses to monosodium glutamate than to any prototypical tastant. Fourth, concentration-response curves showed that concentrations of monosodium glutamate as low as 0.001 M were just above threshold for some of these neurons. Fifth, some neurons in the orbitofrontal region, which responded to monosodium glutamate and other food tastes, decreased their responses after feeding with monosodium glutamate to behavioural satiety, revealing a mechanism of satiety. In some cases this reduction was sensory-specific. Sixth, it was shown in psychophysical experiments in humans that the flavor of umami is strongest with a combination of corresponding taste and olfactory stimuli (e.g. monosodium glutamate and garlic odor). The hypothesis is proposed that part of the way in which glutamate works as a flavor enhancer is by acting in combination with corresponding food odors. The appropriate associations between the odor and the glutamate taste may be learned at least in part by olfactory to taste association learning in the primate orbitofrontal cortex. Seventh, in neuroimaging experiments with functional magnetic resonance imaging (fMRI) in humans, it was shown that in humans umami taste produced by monosodium glutamate or by inosine monophosphate produced activation in a region of the anterior insula which is the putative human primary taste cortex and in a part of the orbitofrontal cortex which is the putative human secondary taste cortex.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Sensory Neuron — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation