Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Thermal Decomposition Mechanism of Ba(Dpm)2

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

We have investigated the thermal decomposition behavior of Ba(DPM)2 using thermogravimetry (TG), mass spectrometry (MS), ultraviolet (UV) absorption and in-situ Fourier transform infrared (FTIR) spectroscopy. FTIR has been used particularly for direct monitoring of the bond dissociation order in the metal complex by thermal treatment in either N2 or O2. TG analysis shows that the ambient gas has a significant effect on the weight loss patterns of Ba(DPM)2. The chemical bonds of Ba(DPM)2 begin to decompose at low temperatures below 50 °C and are sequentially dissociated when the temperature is raised. The C-C(CH3)3 and the Ba-O bonds are decomposed most easily at low temperatures, followed by the C-H bond, but the stable C-C and C-O bonds do not dissociate until the total complex is gasified. The decomposition sequence of the chemical bonds in Ba(DPM)2 is similar to that of Sr(DPM)2 but differs from that of Ti(O-iPr)2(DPM)2 which is decomposed in the sequence of C(CH3)3 > C-H and C-O > Ti-O. The major difference in the decomposition sequence between Ba and Ti complexes can be seen to derive from the intrinsic character of the individual metal-oxygen bond as observed by UV spectroscopy.

Affiliations: 1: School of Chemical Engineering and Institute of Chemical Processes, Seoul National University, Shillim-dongSan 56-1, Kwanak-ku, Seoul 151-742, KOREA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation