Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Electron transfer, 151. Decomposition of peroxynitrite as catalyzed by copper(II)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

The decomposition of peroxynitrite in aqueous solution at pH 9.8–11.1 is catalyzed by copper(II) at the 10–7–10–6 M level. In the presence of added ammonia (0.03 M) or imidazole (0.005 M), reaction rates were as much as 160 times as great as those in copper-free systems. Catalysis was strongly inhibited by glycine, 2,2-bipyridyl, and EDTA. The yield of nitrite from the decomposition, [NO¯2]/[O=NOO¯]taken = 0.26, did not vary significantly with pH or [CuII]. Variation of reaction rates with [H+] and [CuII] is consistent with partition of the catalyst into an acidic form, (cat)HA (pKA 10.2–10.5), a dimer, (catHA)2, and a basic form (cat)A; only the first of these is active. Both transformations are taken to be initiated by CuII-induced homolysis of the O—O bond in peroxynitrite, yielding the reactive intermediate, a species of the type CuIII(OH). The latter may react further with peroxynitrite (ultimately yielding NO¯2 and O2) or with nitrite (yielding NO¯3). It is further suggested that catalytic activity of the type observed requires a substitution-labile CuII(OH2) function.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation