Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Reactive oxygen species are involved in lysophosphatidic acid-induced apoptosis in rat cerebellar granule cells

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Lysophosphatidic acid (LPA) induced apoptosis in primary rat cerebellar granule cells, which was characterized morphologically by chromatin condensation and the formation of apoptotic bodies. With redox-sensitive fluorescence probes DCFH-DA and DHR123, the formation of endogenous reactive oxygen species (ROS) inside cells during the apoptosis process was monitored by laser confocal scanning microscopy (LCSM). Pretreatment with the antioxidant tetramethylpyrazine (TMP) could effectively inhibit the formation of endogenous ROS and protect neurons from apoptosis. The results suggest that ROS might be involved in LPA-induced apoptosis in neurons.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation