Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Electron transfer reaction of 4,4′-bipyridine with triethylamine in acetonitrile: effect of water addition on the reaction dynamics

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

The photo-induced electron-transfer reaction of 4,4′-bipyridine (BPY) with triethylamine (TEA) in acetonitrile is studied by laser flash photolysis. The reaction mechanism and kinetics are found very sensitive to the presence of a small amount of water. At low water concentrations (i.e. <0.003 M), an extremely fast-rising metastable product is detected for the first time. A triplet charge transfer complex (3ECT) is found to be the primary intermediate preceding the electron transfer process. Up to about 0.1 M, water facilitates the electron transfer rate, whereas higher water concentrations retard the rate of electron transfer. The Stern-Volmer plot of the triplet decay rate versus the TEA concentration is consistent with the presence of 3ECT in equilibrium with the free excited triplet state of BPY.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation