Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Hydrothermal preparation of CuO-ZnAl2O4 catalyst for phenol ortho-alkylation with methanol: effect of the calcination temperature on the catalytic performance

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The effect of heat-treatment on 10 wt% CuO-ZnAl2O4 catalytic activity in methylation of phenol and the degree of interaction of CuO active phase with support spinel phase were investigated. The CuO-ZnAl2O4 sample was subjected to heat-treatment up to 1000°C. The thermal products were characterized by X-ray diffraction (XRD) analysis, nitrogen adsorption-desorption at -196°C and temperature-programmed desorption (TPD-MS) of CO2. Additionally, the reducibility of copper phases was investigated by temperature-programmed reduction (TPR). XRD patterns of the fresh catalyst sample (calcined at 600°C) indicated the presence of a mixture of poorly crystallized CuO and ZnAl2O4 spinel phase. The presence of two reducible copper species has been found on fresh CuO-ZnAl2O4 catalyst by TPR analysis. After subsequent calcinations in air at elevated temperatures some CuO disappeared with appearance of CuAl2O4 phase. The catalytic results revealed that the CuO addition to ZnAl2O4 increases the activity in ortho-methylation of phenol. Subsequent heat-treatment up to 900°C causes partial deactivation of copper centers, which is the result of transformation of CuO to the inactive CuAl2O4 phase.

10.1163/156856703321505030
/content/journals/10.1163/156856703321505030
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156856703321505030
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156856703321505030
Loading

Article metrics loading...

/content/journals/10.1163/156856703321505030
2003-02-01
2016-12-10

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation