Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Preparation and femtosecond non-linear optical properties of Ag/SiO2 composite thin films

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

Ag nanoparticles embedded in SiO2 thin films (Ag/SiO2 films) were prepared by a multitarget sputtering method. In the optical absorption spectra of the Ag/SiO2 films, the absorption peak due to the surface plasmon resonance (SPR) of Ag particle was clearly observed at the wavelength of 394–413 nm. The imaginary part of the third-order non-linear susceptibility, Im[χ(3)], of the Ag/SiO2 film was estimated to be −1.1 × 10−8 esu measured by the femtosecond Z-scan technique near the SPR peak. The response time of the film measured from the decay of the differential transmission of the pump-probe experiment was 1.3 ps at the SPR peak.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation