Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Formation of sulfur surface species on a commercial NOx-storage reduction catalyst

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

The influence of SO2 exposure under lean (oxidizing) and rich (reducing) reaction conditions on the storage and oxidation/reduction function of a commercial NOx storage-reduction catalyst was investigated by temperature-programmed uptake experiments and high temperature XRD. Both the storage capacity and the oxidation/reduction function of the catalyst were deactivated by SO2 exposure under lean and rich reaction conditions. The deactivation of the storage component, i.e. the loss of the NOx storage capacity, resulted mainly from the formation of Ba-sulfates accumulating in the bulk phase, which have a high thermal stability (>800°C) and, therefore, cannot be removed under the typical operation conditions of a NSR catalyst. For the oxidation function only a temporarily deactivation during lean reaction conditions was observed. Besides the formation of SO2-4 species on the storage component at the beginning of the SO2 exposure under rich conditions, an adsorption of SO2 on the noble metal component was observed resulting in the formation of sulfur deposits. The oxidation of these sulfur species with a subsequent spillover of SO2-4 species to the storage component during lean conditions could accelerate the deactivation of the storage capacity.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation