Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Redifferentiation of human hepatoma cells induced by green tea polyphenols

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

A novel approach for the treatment of cancer is the differentiation therapy in which cancer cells are induced to attain a mature phenotype when exposed to differentiation inducers. To examine the effects of polyphenols extracted from green tea, i.e. ( – )-epicatechin (EC), ( – )-epigallocatechin (EGC), ( – )-epicatechin gallate (ECG) and ( – )-epigallocatechin gallate (EGCG), on the proliferation and redifferentiation of human hepatoma cell line SMMC-7721, we measured the changes of cell growth, cell surface charge and cell morphography after treament with green tea polyphenols. It was found that the growth curve of treated cells was decreased remarkably, cell surface charge of treated cells was decreased and the microvilli on the surface of treated cells were reduced obviously. It confirmed that green tea polyphenols could reverse malignant phenotypic characteristics and induced redifferentiation of SMMC-7721 cells. The ability of green tea polyphenols to inhibit reactive oxygen species (ROS)-mediated oxidative damage of DNA was also assessed in vitro by measuring the conversion of supercoiled pBR322 plasmid DNA to the open circular and linear forms. It was found that green tea polyphenols could significantly inhibit the oxidative damage of DNA induced by a water-soluble azo initiator 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH). However, they could promote the oxidative damage of DNA induced by H2O2 and Fe2+ at high concentrations. The relationship between the anti-cancer activity and antioxidation-prooxidation activity of green tea polyphenols is discussed.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation