Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Correlation in spatial intensity distribution between volumetric bubble oscillations and sonochemiluminescence in a multibubble system

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The correlation in spatial intensity distribution between volumetric oscillation of multibubble and sonochemiluminescence in an ultrasonic standing-wave field is investigated through the measurements of scattered light from bubbles by changing the measuring position in the direction of sound propagation and sonochemiluminescence with luminol. When a thin light sheet, finer than half the wavelength of sound, is introduced into the cavitation bubbles at the anti-node of the sound pressure, the scattered light intensity oscillates temporally. The peak-to-peak light intensity corresponds to the number of the bubbles which contribute to the sonochemical reaction because the radius for oscillating bubbles at pressure antinode is restrictive in a certain range due to the shape instability and the action of Bjerknes force that expels from anti-node bubbles larger than the resonant size. The experimental results show that at the side near the water surface, the peak-to-peak light intensity is larger in comparison with the intensity near the sound source, and this tendency becomes apparent at higher input power. These light scattering results correspond with the spatial intensity distribution of the sonochemiluminescence with luminol. Therefore, it is interpreted that most of the cavitation bubbles contributing to the sonochemical reactions in the standing wave field exist near liquid surface. Present method of light scattering in reference with the image of the sonochemiluminescence is promising for evaluating spatial distribution of violently oscillating cavitation bubbles effective for sonochemical reactions.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation