Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Unequivocal evidence of the presence of titanols in Ti-MCM-48 mesoporous materials. A combined diffuse reflectance UV-Vis-Nir and 29Si-MAS-NMR study

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Mesoporous Ti-MCM-48 materials were synthesised with titanium loading varying from 1 to 3 wt% TiO2. Post-synthesis silylation treatment of the silica surface led to the transformation of silanols, (SiO)3SiOH, into (SiO)3SiOSi(CH3)3 groups, which were identified by means of 29Si-MAS-NMR and diffuse reflectance (DR) Nir spectroscopy. DR UV-Vis spectroscopy was performed to clarify the nature of Ti(IV) sites present in these samples. The UV-Vis spectra show a band at 210 nm with a shoulder at 230 nm, typically assigned to oxygen to tetrahedral Ti(IV) (LMCT) electronic transitions. Interestingly, the component at 230 nm, which was assigned to an electronic transition that involves titanium sites linked to OH groups (named as titanols), strongly decreased upon the silylation treatment. This is a clear evidence that, beside silanols, also titanols were silylated, leading to (SiO)3TiOSi(CH3)3 sites. This fact can be taken as an unequivocal assignment of the shoulder at 230 nm due to oxygen to tetrahedral Ti(IV) electronic transition related to titanol species.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation