Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Adsorption of NO, NH3 and H2O on V2O5/TiO2 catalysts

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The adsorption of small molecules NO, NH3 and H2O on V2O5/TiO2 catalysts is studied with the semiempirical SCF MO method MSINDO as pre-stage for the selective catalytic reduction of NO. The mixed catalyst is represented by hydrogen-terminated cluster models. The local arrangement of the cluster atoms is in accordance with available experimental information. Partial relaxation of cluster atoms near the adsorption sites is taken into account. Calculated adsorption energies are compared with experimental literature data. Rapid convergence of computed properties with cluster size is observed. A possible reaction mechanism for the catalytic reduction of NO with NH3 and O2 is outlined.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation