Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Solvent effect is not significant for the speed of a radical clock

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

The UQCISD(T)/6-31g(d)//UB3LYP/6-31g(d) method and PCM solvation model were used to study the solvent effects on radical clock reactions. The solvents included cyclohexane, benzene, tetrahydrofuran, methylene chloride, acetone, methanol, acetonitrile, dimethylsulfoxide, nitromethane and water. We found very small solvent effects on the rearrangement activation free energy of cyclobutylmethyl and 1-hexen-6-yl radicals. Therefore, it is valid to use a calibrated radical clock in an unclear reaction medium because the speed of the radical clock should not change significantly by the solvent effect. In addition, we separated the solvent effects on radical rearrangement into three components, electrostatic, cavitation and dispersion/repulsion. We discussed the contribution of each component in detail.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation