Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Ligand effects on migratory insertion by the Heck reaction

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Ligand effects on ethene insertion into a series of cationic phenylpalladium complexes with diverse bidentate phosphine ligands were studied by using the density functional methods. For the complexes with n-membered ring ligands (n = 4–6), a correlation was found between the ring size and the insertion barrier. This behavior was explained by considering the P—Pd—P bond angle. In the case of complexes with ligands of different rigidity, almost no difference was found for the insertion barriers. Furthermore, the bidentate phosphine ligand was systematically substituted by Me, t-Bu, F and Ph groups. It was found that the electron-donating substituents increased the insertion barrier, whereas the electron-withdrawing groups decreased it. The substantial increase of insertion barrier by the t-Bu group indicated that steric effect also had great effect on the migratory insertion.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation