Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

In situ FT-IR studies on mechanistics of heterogeneous photocatalytic oxidation of ethene over uranyl species anchored on MCM-41

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The uranyl species encapsulated within the mesopores of siliceous MCM-41 serves as efficient heterogeneous photo-catalyst for the sunlight-assisted direct oxidation of ethene. The mode of oxidation is through abstraction of H-atom from ethene by the photolytically excited uranyl species and the consequent formation of peroxy species. The in situ IR spectroscopy results indicate that these peroxy species give rise to final products such as carbon dioxide and water on further oxidation via formation of formate-type transient species. Furthermore, the silanol groups of the host matrix help in immobilization of these peroxy species through hydrogen bonding and, at the same time, they participate in the subsequent oxidation reactions also.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation