Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effect of dissolved oxygen and lanthanide ions in solution on TiO2 photocatalytic oxidation of 2-propanol

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The photocatalytic degradation of 2-propanol in D2O solution under UV irradiation was investigated. The conversion yield from 2-propanol to acetone was studied by 1H-NMR measurements. The study was carried out to elucidate effects of O2 in the reaction medium and lanthanide ion modification on the TiO2 surface. Under aerobic conditions, acetone formation was clearly increased in comparison with anaerobic conditions. On the modification of TiO2 with lanthanide ion, the conversion yield decreased with the increase in the ionic radius. Yb3+ ion modification increased the acetone formation by approx. 5% in comparison with the unmodified case. Appreciably large effects of the counter ion in lanthanide salts were also observed. The role of OH˙ radical formation in the first step of photocatalysis was emphasized in the experimental results.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation