Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Influence of electroless nickel plating of hydrogen-absorbing alloys on cycle characteristics of nickel–metal hydride batteries

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The effects of electroless nickel plating of a hydrogen-absorbing alloy on the cycle characteristics of a nickel–metal hydride battery were investigated. The cycle life was improved by employing an electroless nickel-plated hydrogen-absorbing alloy for the negative electrode, which retained the same high-rate level and low-temperature characteristics compared to a cell using a non-plated hydrogen-absorbing alloy. The electroless nickel-plated hydrogen-absorbing alloy provided better electrochemical characteristics when its surface was partly and tightly covered by nickel particles under optimal electroless plating conditions.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation