Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

A new simple preparation of platinum-nickel alloy nanoparticles and their characterization as an electrocatalyst for methanol oxidation

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Pt-Ni alloy nanoparticles were produced by casting 2 or 10 mM H2PtCl6 solutions on a Ni column. The apparent particle size for the resultant Pt-Ni alloys increased with the concentration of the H2PtCl6 solution, while the content of Pt in the alloy decreased. The potential sweeps of 5 cycles in an H2SO4 aqueous solution for Pt-Ni (2 mM)/Ni and Pt-Ni (10 mM)/Ni electrodes led to electrochemical behavior similar to a polycrystalline Pt electrode, suggesting the formation of a few thin Pt layers on each Pt-Ni alloy surface. In electrochemical measurements, both Pt-Ni/Ni electrodes showed more negative onset potential of methanol oxidation and slower degradation of oxidation current of methanol than the polycrystalline Pt electrode. X-ray photoelectron spectroscopy of both Pt-Ni/Ni electrodes showed the shift of Pt4f peaks to a higher binding energy, suggesting that the increase in the d vacancy in the balance band 5d orbital of Pt contributed to the improved electrocatalytic activity and durability of the Pt-Ni/Ni electrodes.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation