Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Infrared study of UV-irradiated tungsten trioxide powders containing adsorbed dimethyl methyl phosphonate and trimethyl phosphate

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

The photodecomposition of dimethyl methylphosphonate (DMMP) and trimethyl phosphate (TMP) adsorbed on monoclinic WO3 powders when irradiated by ultraviolet light (UV) in air, oxygen, and under evacuation was investigated using infrared spectroscopy (IR). The IR spectra show that DMMP decomposes into methyl phosphonate upon exposure to 254 nm UV for 2 h at room temperature in air. The same decomposition of DMMP occurs only at temperatures above 300°C without UV illumination. TMP differs from DMMP in that the photodecomposition product is not the same as the decomposition product obtained by heating above 300°C. Thermal decomposition leads to formation of a phosphate on the surface, whereas photodecomposition leads to the same adsorbed methyl phosphonate as found for the thermal or photodecomposition of DMMP. Since TMP does not contain a P–CH3 bond, the formation of a methyl phosphonate on the surface after UV illumination involves a mechanism where CH3 groups migrate from the methoxy group to the phosphorous central atom. No decomposition is observed at room temperature when DMMP or TMP adsorbed on WO3 is irradiated under vacuum or in nitrogen atmosphere. Therefore, the photodecomposition of either DMMP or TMP adsorbed on WO3 at room temperature does not involve a reaction with the lattice oxygen but rather a reaction with the oxygen radicals produced by the decomposition of ozone.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation