Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Microscopic structures of adsorbed cationic porphyrins on clay surfaces: molecular alignment in artificial light-harvesting systems

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Research on Chemical Intermediates

The intercalation behavior of cationic porphyrin derivatives within the interlayer spaces of nano-layered clay minerals has been investigated. The porphyrins were successfully intercalated by the newly adopted method of repeated freeze–thaw cycles. The absorption spectra of the porphyrins were compared in the solution phase, adsorbed onto the exfoliated clay nano-sheets, intercalated within the interlayer spaces of clay sheets dispersed in water and intercalated in dry films. Substantial red shifts of the λmax values in the absorption spectra of the porphyrins were observed on the exfoliated clay sheets, and further red shifts were induced within the interlayer space. The dry films of the intercalated samples exhibited the largest red shifts. X-ray diffraction studies revealed that the clearance space between the layers in these intercalated hybrid compounds is only large enough for the porphyrins to be rigidly packed parallel to the clay layer. For the exfoliated clay nano-sheets, theoretical calculations were carried out on the correlation between the dihedral angle of the meso-substituted pyridiniumyl plane vs. the porphyrin ring and the λmax of the porphyrin Soret band. An extrapolation of the experimental λmax value to the correlation curve, afforded the dihedral angle to be 61.6°. The microscopic structure of the adsorbed state of the cationic porphyrins on the exfoliated clay nano-sheets was, thus, proposed to involve an orientation parallel to the clay surface, with a distance of 0.15 nm from the surface, which implies the expulsion of the solvent water molecules.

10.1163/156856707779160753
/content/journals/10.1163/156856707779160753
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156856707779160753
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156856707779160753
Loading

Article metrics loading...

/content/journals/10.1163/156856707779160753
2007-01-01
2016-12-03

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Research on Chemical Intermediates — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation