Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Photodegradation of organic compounds in water solutions by means of economically advantageous and environment-friendly processes is a topic of growing interest. In recent years a great attention has been devoted to TiO2-based photocatalysts for the oxidative degradation of various organic pollutants. In this context, we have prepared new photo-catalytic polycrystalline TiO2 systems impregnated with sensitizers, i.e., copper, iron or manganese porphyrins, and investigated their photoactivity for 4-nitrophenol oxidation compared with that of bare TiO2. A significant improvement of the photoreactivity was observed in the case of TiO2 impregnated with copper porphyrin, while only a slight beneficial effect was observed in the case of iron porphyrin. In contrast, the presence of manganese porphyrin appeared to be detrimental.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation