Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The reactions and composition of the surface intermediate species in the selective catalytic reduction of NOx with ethylene over Co-ZSM-5

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

A pretreatment-transient reaction product analysis method was applied to study the reactions and average composition of the possible surface intermediate species in selective catalytic reduction with ethylene of NOx over Co-ZSM-5. The reactions of the surface species, formed by the pretreatment of Co-ZSM-5 in a NO/C2H4/O2 mixture at 275°C, with the NO/O2 flow produced much more N2 than that with the individual NO or O2 flow. The similarity of N2/COx/H2O product distribution generated from the above surface species-NO/O2 reactions and that from the normal NO/C2H4/O2 flow reactions implies that the surface species NCaObHc formed in the three-component pretreatment process is very likely the primary intermediate surface species generated during the real flow reactions. The in situ FT-IR (DRIFT) spectroscopy measurements of the surface species support the above conclusion.

Affiliations: 1: Laboratory of Plasma Physical Chemistry, Box 288, Dalian University of Technology, Dalian 116024, P. R. China


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation