Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Adsorption of benzene onto mesoporous silicates modified by titanium

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Mesoporous molecular sieve SBA-15 modified by titanium has been utilized for removing organic pollutants, such as benzene, from air. Titanium was impregnated inside SBA-15 by wetness impregnation after synthesis of SBA-15 (impregnation method) or was doped into the SBA-15 framework by the direct addition of Ti precursor into the sol during synthesis (doping method). In the breakthrough curves for gas-phase benzene adsorption, Ti addition into SBA-15 resulted in the enhancement of benzene adsorption capacity, depending on Ti loading amounts. An increase in adsorption temperature remarkably reduced the benzene adsorption capacity, indicating that the interaction between benzene and the materials was weak.

Affiliations: 1: School of Chemical Engineering and Bioengineering, University of Ulsan, Ulsan 680-749, South Korea


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation