Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Structure and Reactivity of Intermediates. N-Overlayer On Pd(100), Rh(100) and Pt-Rh(110) and Its Reaction With H2

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Rh(100), Pt(100), and Pt-Rh(100) surfaces are inert for the dissociative adsorption of N2, but they are active for the catalytic reaction of NO with H2 During the reaction on Rh(100) and Pt-Rh(100) surfaces, N atoms are accumulated by making a c(2x2)-N overlayer, but no accumulation of N atoms occurs on Pt(100) surface. The fact that N atoms on the PtRh(100) surface gives the c(2x2) structure indicates that the N atoms have equal affinity to Pt and Rh on the alloy surface. When the c(2x2)-N surface was exposed to H2 of 10-7 to 10-8 Torr, a prominent loss peak being assignable to NHx appeared at 3200 - 3240 cm-1 at around 400 K The in-situ HREELS study proved that NH are prominent species which are formed during the hydrogenation of the c(2x2)-N, that is, a quasi-equilibrium of N + 1/2 H2 NH is established. When a clean Pt-Rh(100) (Pt/Rh = 1/3) alloy surface is exposed to NO at about 440 K, the LEED pattern changes sequentially as (1x1)→ c (2x2) → c (2x2) + p (3x1)→ p (3x1), where the c (2x2) pattern appears instantaneously on the alloy surface of any Pt/Rh ratio but the p(3xl) pattern accompanies a certain characteristic interval times being responsible to the segregation of Rh. The p(3x1) surface reflects the formation of an intermediate of Rh-O complex overlayer and it reacts rapidly with H2.

Affiliations: 1: The Institute for Solid State Physics University of Tokyo 7-22-1 Roppongi, Minato-ku, Tokyo 106, JAPAN


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation