Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Production of Acetylene By a Microwave Catalytic Reaction of Water and Carbon

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

The feasibility of producing hydrocarbons in a microwave induced catalytic reaction of carbon and water was successfully demonstrated. The major reaction products are acetylene, methane, ethylene and ethane. Other significant products include propylene, propyne, cyclopropane, carbon dioxide and carbon monoxide. Relative product yields and their distribution depend on a number of experimental variables, such as irradiation time, incident microwave power, water/carbon ratio and the characteristics of the microwave pulse train. At short irradiation times and low incident power only C1 - C2 products were observed, their rates of formation being an exponential function of the incident microwave power. High incident power led to the formation of C3 to C6 hydrocarbons at the expense of acetylene. Initial addition of methane and carbon dioxide to the reaction mixture increased the yield of acetylene, whereas addition of methanol to water resulted in a sharp increase in the amounts of both methane and acetylene. Mechanisms are considered to account for these observations.

Affiliations: 1: Department of Chemistry Queen's University Kingston, Canada K7L 3N6


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation