Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Microwave-Induced Organic Reaction Enhancement (More) Chemistry: Techniques for Rapid, Safe and Inexpensive Synthesis

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Synthetic organic reactions have been conducted under microwave irradiation in open vessels in unaltered domestic microwave ovens. Reaction times vary from a few seconds for sub-milligram reactions to about 15 minutes for reactions carried out on a scale of hundreds of grams. Promising results have been obtained for several condensations, as well as the Bischler-Napieralski reaction, the Wolff-Kishner reduction, free radical dehalogenation reactions, and other standard synthetic operations. Rapid catalytic transfer hydrogenation using ammonium formate as the source of hydrogen has been conducted at about 100-130 °C under microwave irradiation. Meaningful, safe and inexpensive synthetic experiments for undergraduate and pre-college students have been developed and tested. The MORE chemistry techniques make it possible to use simple apparatus and very short reaction times. Commercial microwave ovens are now essential equipment in our research and teaching laboratories [1-3]. These ovens are relatively inexpensive, easy to move from one laboratory and set up in another, and safe to operate. Glass, plastics, and ceramics are essentially transparent to microwaves whereas many organic compounds are dipolar in nature and absorb microwave energy readily. We have found that untraditional experimental arrangements are possible for conducting a wide variety of organic reactions in open vessels inside domestic microwave ovens. Depending on the quantity of reactants, most reactions (on a scale of milligrams to several grams) can be completed in minutes instead of hours. One important element of our "Microwave-induced Organic Reaction Enhancement" (MORE) chemistry is the proper choice of a microwave energy transfer agent as the reaction medium.

Affiliations: 1: Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation