Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Morphology and Photocatalytic Activity of TiO2 Aerogels

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

In this paper we describe a methodology to form a data base that will allow us to investigate the correlation between the morphology of TiΟ2 aerogels and their photocatalytic activity with respect to photodecomposition of a water soluble organic compound. We start with a qualitative theoretical argument in which we show that any functionality that involves optimization of different length scale should require some kind of ramified structure. For photocatalytic activity we need to optimize substrate and light absorptions with diffusion of products and reactants. We proceed to describe the techniques that we use to analyze and parametrize the morphology of the aerogels, using nitrogen adsorption and Small Angle Neutron Scattering. The photocatalytic activity is monitored through the photodecomposition of salicylic acid. We compare the adsorption and photodegradation of salicylic acid on the aerogels to many other forms of TiO2 and report that under our experimental conditions the photocatalytic activity of the aerogels is superior.

Affiliations: 1: Department of Physics, Brooklyn College, C. U.N. Y., Brooklyn, N. Y., 11210, U.S.A.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation