Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Solvothermal Synthesis of Large Surface Area Zirconia

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

The reaction of zirconium n-propoxide in glycol at 300°C yielded microcrystalline tetragonal zirconia (ZrO2). The crystallite size of the product depended on the carbon number of the glycol and increased in the following order (carbon number of glycol): 2 < 6 < 4, which suggested that the heterolytic cleavage of O-C bond of gylcoxide formed by transesterification is the prime factor for the formation of the product. In toluene, zirconium isopropoxide also gave tetragonal zirconia at 300°C, and zirconium tert-butoxide decomposed at 200°C yielding amorphous zirconia, while zirconium n-propoxide was stable at 300°C. These results suggest that the reaction in toluene depends on the structure of the alkyl group of the alkoxides. Thus-obtained tetragonal zirconias maintained large surface areas (90-160 m2/g) even after calcination at 500°C.

Affiliations: 1: Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation