Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Collinear interactions and contour integration

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

The visibility of a local target is influenced by the global configuration of the stimulus. Collinear configurations are a specific case in which facilitation or suppression of the target has been found to be dependent on the contrast threshold of the target. The role of collinear interactions in perceptual grouping, especially in contour integration, is still controversial. In the current study, the role of collinear interactions in noise was investigated using experimental conditions similar to those utilized in studies of contour integration. The contrast detection paradigm in the presence of similar Gabor elements presented in the background was used. The results show that contrast detection threshold of the target alone is increased (suppression) when it is embedded in randomly oriented background elements. However, when the target is flanked by two collinear Gabor elements, the target is facilitated even at higher target contrast levels. Facilitation is not found for orthogonal configurations. The results suggest that the response to a local element in a contour is modified by lateral facilitative and suppressive inputs from elements comprising the smooth contour and randomly oriented background elements, respectively. Thus, detection of elements along a contour should be considered as integration of global neuronal activity rather than as the output of local and individual neurons.

Affiliations: 1: The Institute for Vision Research, Rehovot, Israel; 2: Scientific Learning Corporation, Berkeley, CA, USA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation