Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Collinear effects on 3-Gabor alignment as a function of spacing, orientation and detectability

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Our ability to align three Gabor patches depends upon their internal carrier orientation; we are better at aligning vertical or horizontal patches than oblique patches (Keeble and Hess, 1998). However, the tuning of alignment to patch orientation has not studied in detail. We measured the alignment of a vertical target with reference patches varying in orientation and found it tuned to vertical (collinear) patches at centre-to-centre separation of three carrier periods, with a steep increase for oblique references and slight downturn for horizontal (orthogonal) references. Next, we increased separation between the patches, testing collinear, side-by-side, orthogonal and oblique configurations. Surprisingly, we found that the tuning for collinear patches was preserved. All ten observers tested had lower alignment thresholds for collinear patches. This effect extended to an inter-patch separation of 10 carrier periods (20 envelope standard deviations). Additionally, we measured contrast detection thresholds for the reference patches using the same stimuli. The collinear facilitation of alignment was even greater than the collinear facilitation of detection.

Affiliations: 1: Gatsby CNU, UCL, London WC1N 3AR; 2: Institute for VisionResearch, 14 Ehad Ha'am St, Rehovot 76105, Israel; 3: Scientific Learning Corporation, 1995 University Ave, Suite 400, CA 94704-1074, USA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation